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Compulsory Part

1. (a) Let n ∈ Z, then n ∈ Z× iff there exists m such that nm = 1, this holds precisely
when n = ±1. So Z× = {1,−1}.

(b) Note that the multiplicative identity function is 1 : R → R where 1(x) = 1 for
any x ∈ R. A real-valued function f on R is invertible if there exists g such that
f(x)g(x) = 1(x) = 1 for any x ∈ R. In particular, for any x ∈ R, f(x) ∈ R

is invertible in the field R, so f(x) ̸= 0. Conversely, if f(x) ̸= 0 for any x, then
by taking g(x) = 1/f(x), we see that g is a multiplicative inverse to f(x). Thus
R× = {f : R → R| f(x) ̸= 0, ∀x ∈ R}.

(c) Let D be an integral domain, we will show that D[x]× = D×. Let f(x) ∈ D[x]×,
let g(x) ∈ D[x] such that f(x)g(x) = 1. Then deg(f) + deg(g) = deg(1) = 0, so
that deg(f) = deg(g) = 0, i.e. f(x) and g(x) are constant polynomial, and we may
regard f(x) = a, g(x) = b ∈ D. Then f(x)g(x) = ab = 1 may be regarded as an
equation in D. In particular, a, b are invertible. So f(x) = a ∈ D×.

2. R× is a group under multiplication since multiplication is a well-defined associative bi-
nary operation by definition of ring, and any element r ∈ R× by definition has an inverse
under this operation. The multiplicative identity 1 of R, satisfies 1 ·1 = 1, and so 1 ∈ R×.
It is by definition the identity under product, therefore it forms a group.

3. We will prove the statement by induction on n, the case for n = 1 is clear as both sides are
exactly the same. Suppose that the equality has been shown for some n ∈ Z>0, consider
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In the last equality, we have used the equality
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Therefore, the equality holds true for arbitrary n.

4. If a, b are nilpotent, suppose an = 0 and bm = 0 for some n,m ∈ Z>0, note that in the
solution of Q3, we only used the fact that a commutes with b. Therefore, by the same
argument, we have

(a+ b)n+m =
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Note that for k = 0, 1, ...,m, we have an+m−kbk = an · (am−kbk) = 0 · (am−kbk) = 0
and for k = m + 1,m + 2, ...,m + n, we have an+m−kbk = bm(an+m−kbk−m) = 0 ·
(an+m−kbm−k) = 0. Therefore, each term in the above sum is zero, this implies that
(a+ b)n+m = 0 and thus a+ b is nilpotent.

5. (a) Note that it suffices to show that na = 0 for all a ∈ D if and only if n1 = 0. Then
in particular, there is no n such that na = 0 for all a ∈ D if and only if there is no n
so that n1 = 0. And the minimums of n satisfying both conditions are the same.
If na = 0 for all a ∈ D, then in particular taking a = 1, we get n1 = 0.
Conversely, if n1 = 0, then na = a + a + ... + a = 1 · a + 1 · a + ... + 1 · a =
(1 + 1 + ...+ 1) · a = n1 · a = 0 · a = 0. This completes the proof.

(b) If D has nonzero characteristic, suppose that it has characteristic n, if n was not
prime, then n = kl for some k, l > 1. Then 0 = n1 = k1 · l1. Since k, l ̸= n, k1
and l1 are nonzero element whose product is zero, which contradicts to the fact that
D is an integral domain.

Optional Part

1. Note that (a+ b)(a− b) = a(a− b) + b(a− b) = a2 − b2 + ba− ab = a2 − b2 holds true
if and only if ba = ab. Therefore (a + b)(a− b) = a2 − b2 for all a, b ∈ R if and only if
ab = ba for all a, b ∈ R, i.e. R is commutative.

2. No, both 2, 3 are zero divisors in Z6 since 2 · 3 = 0 but 2 + 3 = 5 is a unit in Z6.



For another example, consider the ring M2(R) the ring of 2-by-2 matrices with real co-

efficients, then the matrices
(
1 0
0 0

)
and

(
0 0
0 1

)
are zero divisors since their product is

the zero matrix, but they sum to give the identity matrix, which is not a zero divisor.

3. See Q5d of tutorial 8.

4. (a) Let f, g be real valued function so that f(0) = g(0) = 0, then clearly f + g is also a
real valued function, and (f + g)(0) = f(0) + g(0) = 0, so f + g ∈ R.

(b) Similarly (fg)(0) = f(0)g(0) = 0, so fg ∈ R.

(c) The additive identity is given by the zero function 0(x) := 0 for all x ∈ R then by
definition 0 ∈ R. Clearly (0 + f)(x) = 0 + f(x) = f(x) = (f + 0)(x), so that
0+ f = f + 0 = f so it is the additive identity.

(d) The multiplicative identity is given by the function 1(x) := 1 for all x ̸= 0 and
1(0) = 0. By definition 1 ∈ R, and (1 · f)(x) = f(x) for all x ̸= 0, and for x = 0,
1(0)f(0) = 0 = f(0). So we have verified that 1 · f = f · 1 = f for all f , so it is
the multiplicatively identity.

5. (a) Yes, let a, b ∈ R be units, then there exists a−1, b−1 so that aa−1 = a−1a = 1 =
bb−1 = b−1b. Then (ab)(b−1a−1) = (b−1a−1)(ab) = 1, so ab is also a unit.

(b) No, 1 is unit in Z2 but 1 + 1 = 0 is not a unit.

6. (⇒) If R[x] is an integral domain, note that φ : R → R[x] by sending any r ∈ R to
r regarded as a constant polynomial is a well-defined injective ring homomorphism, i.e.
we may regard R ⊂ R[x] as a subring. Now a subring of an integral domain must be an
integral domain, otherwise zero divisors in R will give zero divisors in R[x].

(⇐) If R is an integral domain, we will show that R[x] does not contain zero divisors
as well. Let f(x) =

∑n
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i and g(x) =
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j=0 bjx
j be general elements in R[x],

expressed in the form such that an, bm are nonzero, assume that f(x)g(x) = 0 ∈ R[x],
then f(x)g(x) =
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k = 0. Here
∑

i+j=k aibj is the coefficient of xk in
f(x)g(x). In particular the coefficient of xn+m is anbm = 0, which implies that an or bm
is zero, as R does not contain zero divisor. This contradicts with our assumption on an
and bm.

7. (a) If f or g is 0, then deg(fg) = deg 0 = −∞ and deg f + deg g = −∞ since
deg f or deg g is −∞. (Let’s say we are doing arithmetic over [−∞,∞) where
−∞+ k = −∞ for any finite k.)
Now if f, g are nonzero, then the degree is defined as the the maximum power
appearing in the finite sum f(x) =

∑∞
i=0 aix

i, i.e. the index n such that an ̸= 0 but
ai = 0 for all i > n. Suppose that deg(f) = n and deg(g) = m, then we may write
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j . where an and bm are nonzero. Then
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k. Clearly there are no terms with higher degree
than m + n, and the coefficient for xm+n is given by anbm, which is nonzero since
R is an integral domain. Therefore deg(fg) = m+ n = deg f + deg g.

(b) If f or g is zero, say f = 0 wlog, then f + g = g and deg(f + g) = deg g so the
inequality holds true.



Now suppose f, g are nonzero, we may write f(x) =
∑∞

i=0 aix
i and g(x) =

∑∞
i=0,

and suppose f, g have degrees n,m respectively, i.e. ai = 0 for i > n and bi = 0
for i > m. Then f ± g =

∑∞
i=0(ai ± bi)x

i. For i > max{n,m}, clearly ai ± bi = 0
since ai = bi = 0. thus deg(f ± g) ≤ max{m,n}.


