THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2023-24
 Homework 6 Solutions
 21st March 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

Compulsory Part

1. (a) Let $n \in \mathbb{Z}$, then $n \in \mathbb{Z}^{\times}$iff there exists m such that $n m=1$, this holds precisely when $n= \pm 1$. So $\mathbb{Z}^{\times}=\{1,-1\}$.
(b) Note that the multiplicative identity function is $\mathbb{1}: \mathbb{R} \rightarrow \mathbb{R}$ where $\mathbb{1}(x)=1$ for any $x \in \mathbb{R}$. A real-valued function f on \mathbb{R} is invertible if there exists g such that $f(x) g(x)=\mathbb{1}(x)=1$ for any $x \in \mathbb{R}$. In particular, for any $x \in \mathbb{R}, f(x) \in \mathbb{R}$ is invertible in the field \mathbb{R}, so $f(x) \neq 0$. Conversely, if $f(x) \neq 0$ for any x, then by taking $g(x)=1 / f(x)$, we see that g is a multiplicative inverse to $f(x)$. Thus $R^{\times}=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f(x) \neq 0, \forall x \in \mathbb{R}\}$.
(c) Let D be an integral domain, we will show that $D[x]^{\times}=D^{\times}$. Let $f(x) \in D[x]^{\times}$, let $g(x) \in D[x]$ such that $f(x) g(x)=1$. Then $\operatorname{deg}(f)+\operatorname{deg}(g)=\operatorname{deg}(1)=0$, so that $\operatorname{deg}(f)=\operatorname{deg}(g)=0$, i.e. $f(x)$ and $g(x)$ are constant polynomial, and we may regard $f(x)=a, g(x)=b \in D$. Then $f(x) g(x)=a b=1$ may be regarded as an equation in D. In particular, a, b are invertible. So $f(x)=a \in D^{\times}$.
2. R^{\times}is a group under multiplication since multiplication is a well-defined associative binary operation by definition of ring, and any element $r \in R^{\times}$by definition has an inverse under this operation. The multiplicative identity 1 of R, satisfies $1 \cdot 1=1$, and so $1 \in R^{\times}$. It is by definition the identity under product, therefore it forms a group.
3. We will prove the statement by induction on n, the case for $n=1$ is clear as both sides are exactly the same. Suppose that the equality has been shown for some $n \in \mathbb{Z}_{>0}$, consider

$$
\begin{aligned}
(a+b)^{n+1} & =(a+b)(a+b)^{n} \\
& =(a+b) \sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k} \\
& =\sum_{k=0}^{n}\binom{n}{k} a^{n-k+1} b^{k}+\sum_{l=0}^{n}\binom{n}{l} a^{n-l} b^{l+1} \\
& =\sum_{k=0}^{n}\binom{n}{k} a^{n+1-k} b^{k}+\sum_{k=1}^{n+1}\binom{n}{k-1} a^{n+1-k} b^{k} \\
& =\binom{n}{0} a^{n+1}+\binom{n}{n} b^{n+1}+\sum_{k=1}^{n}\left[\binom{n}{k}+\binom{n}{k-1}\right] a^{n+1-k} b^{k} \\
& =\sum_{k=0}^{n+1}\binom{n+1}{k} a^{n+1-k} b^{k} .
\end{aligned}
$$

In the last equality, we have used the equality $\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k}$, which can be shown directly from

$$
\begin{aligned}
\binom{n}{k}+\binom{n}{k-1} & =\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!} \\
& =\frac{(n-k+1) \cdot n!}{k!(n-k+1)!}+\frac{k \cdot n!}{k!(n-k+1)!} \\
& =\frac{(n-k+1+k) \cdot n!}{k!(n-k+1)!} \\
& =\frac{(n+1)!}{k!(n-k+1)!} \\
& =\binom{n+1}{k} .
\end{aligned}
$$

Therefore, the equality holds true for arbitrary n.
4. If a, b are nilpotent, suppose $a^{n}=0$ and $b^{m}=0$ for some $n, m \in \mathbb{Z}_{>0}$, note that in the solution of Q3, we only used the fact that a commutes with b. Therefore, by the same argument, we have

$$
(a+b)^{n+m}=\sum_{k=0}^{n+m}\binom{n+m}{k} a^{n+m-k} b^{k} .
$$

Note that for $k=0,1, \ldots, m$, we have $a^{n+m-k} b^{k}=a^{n} \cdot\left(a^{m-k} b^{k}\right)=0 \cdot\left(a^{m-k} b^{k}\right)=0$ and for $k=m+1, m+2, \ldots, m+n$, we have $a^{n+m-k} b^{k}=b^{m}\left(a^{n+m-k} b^{k-m}\right)=0$. $\left(a^{n+m-k} b^{m-k}\right)=0$. Therefore, each term in the above sum is zero, this implies that $(a+b)^{n+m}=0$ and thus $a+b$ is nilpotent.
5. (a) Note that it suffices to show that $n a=0$ for all $a \in D$ if and only if $n 1=0$. Then in particular, there is no n such that $n a=0$ for all $a \in D$ if and only if there is no n so that $n 1=0$. And the minimums of n satisfying both conditions are the same.
If $n a=0$ for all $a \in D$, then in particular taking $a=1$, we get $n 1=0$.
Conversely, if $n 1=0$, then $n a=a+a+\ldots+a=1 \cdot a+1 \cdot a+\ldots+1 \cdot a=$ $(1+1+\ldots+1) \cdot a=n 1 \cdot a=0 \cdot a=0$. This completes the proof.
(b) If D has nonzero characteristic, suppose that it has characteristic n, if n was not prime, then $n=k l$ for some $k, l>1$. Then $0=n 1=k 1 \cdot l 1$. Since $k, l \neq n, k 1$ and $l 1$ are nonzero element whose product is zero, which contradicts to the fact that D is an integral domain.

Optional Part

1. Note that $(a+b)(a-b)=a(a-b)+b(a-b)=a^{2}-b^{2}+b a-a b=a^{2}-b^{2}$ holds true if and only if $b a=a b$. Therefore $(a+b)(a-b)=a^{2}-b^{2}$ for all $a, b \in R$ if and only if $a b=b a$ for all $a, b \in R$, i.e. R is commutative.
2. No, both 2,3 are zero divisors in \mathbb{Z}_{6} since $2 \cdot 3=0$ but $2+3=5$ is a unit in \mathbb{Z}_{6}.

For another example, consider the ring $M_{2}(\mathbb{R})$ the ring of 2-by-2 matrices with real coefficients, then the matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ are zero divisors since their product is the zero matrix, but they sum to give the identity matrix, which is not a zero divisor.
3. See Q5d of tutorial 8.
4. (a) Let f, g be real valued function so that $f(0)=g(0)=0$, then clearly $f+g$ is also a real valued function, and $(f+g)(0)=f(0)+g(0)=0$, so $f+g \in R$.
(b) Similarly $(f g)(0)=f(0) g(0)=0$, so $f g \in R$.
(c) The additive identity is given by the zero function $\mathbb{D}(x):=0$ for all $x \in \mathbb{R}$ then by definition $\mathbb{D} \in R$. Clearly $(\mathbb{D}+f)(x)=0+f(x)=f(x)=(f+\mathbb{D})(x)$, so that $\mathbb{D}+f=f+\mathbb{D}=f$ so it is the additive identity.
(d) The multiplicative identity is given by the function $\mathbb{1}(x):=1$ for all $x \neq 0$ and $\mathbb{1}(0)=0$. By definition $\mathbb{1} \in R$, and $(\mathbb{1} \cdot f)(x)=f(x)$ for all $x \neq 0$, and for $x=0$, $\mathbb{1}(0) f(0)=0=f(0)$. So we have verified that $\mathbb{1} \cdot f=f \cdot \mathbb{1}=f$ for all f, so it is the multiplicatively identity.
5. (a) Yes, let $a, b \in R$ be units, then there exists a^{-1}, b^{-1} so that $a a^{-1}=a^{-1} a=1=$ $b b^{-1}=b^{-1} b$. Then $(a b)\left(b^{-1} a^{-1}\right)=\left(b^{-1} a^{-1}\right)(a b)=1$, so $a b$ is also a unit.
(b) No, 1 is unit in \mathbb{Z}_{2} but $1+1=0$ is not a unit.
6. (\Rightarrow) If $R[x]$ is an integral domain, note that $\varphi: R \rightarrow R[x]$ by sending any $r \in R$ to r regarded as a constant polynomial is a well-defined injective ring homomorphism, i.e. we may regard $R \subset R[x]$ as a subring. Now a subring of an integral domain must be an integral domain, otherwise zero divisors in R will give zero divisors in $R[x]$.
(\Leftarrow) If R is an integral domain, we will show that $R[x]$ does not contain zero divisors as well. Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$ and $g(x)=\sum_{j=0}^{m} b_{j} x^{j}$ be general elements in $R[x]$, expressed in the form such that a_{n}, b_{m} are nonzero, assume that $f(x) g(x)=0 \in R[x]$, then $f(x) g(x)=\sum_{k=0}^{n+m} \sum_{i+j=k} a_{i} b_{j} x^{k}=0$. Here $\sum_{i+j=k} a_{i} b_{j}$ is the coefficient of x^{k} in $f(x) g(x)$. In particular the coefficient of x^{n+m} is $a_{n} b_{m}=0$, which implies that a_{n} or b_{m} is zero, as R does not contain zero divisor. This contradicts with our assumption on a_{n} and b_{m}.
7. (a) If f or g is 0 , then $\operatorname{deg}(f g)=\operatorname{deg} 0=-\infty$ and $\operatorname{deg} f+\operatorname{deg} g=-\infty$ since $\operatorname{deg} f$ or $\operatorname{deg} g$ is $-\infty$. (Let's say we are doing arithmetic over $[-\infty, \infty)$ where $-\infty+k=-\infty$ for any finite k.)
Now if f, g are nonzero, then the degree is defined as the the maximum power appearing in the finite sum $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$, i.e. the index n such that $a_{n} \neq 0$ but $a_{i}=0$ for all $i>n$. Suppose that $\operatorname{deg}(f)=n$ and $\operatorname{deg}(g)=m$, then we may write $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$ and $g(x)=\sum_{j=0}^{m} b_{j} x^{j}$. where a_{n} and b_{m} are nonzero. Then $f(x) g(x)=\sum_{k=0}^{m+n} \sum_{i+j=k} a_{i} b_{j} x^{k}$. Clearly there are no terms with higher degree than $m+n$, and the coefficient for x^{m+n} is given by $a_{n} b_{m}$, which is nonzero since R is an integral domain. Therefore $\operatorname{deg}(f g)=m+n=\operatorname{deg} f+\operatorname{deg} g$.
(b) If f or g is zero, say $f=0$ wlog, then $f+g=g$ and $\operatorname{deg}(f+g)=\operatorname{deg} g$ so the inequality holds true.

Now suppose f, g are nonzero, we may write $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$ and $g(x)=\sum_{i=0}^{\infty}$, and suppose f, g have degrees n, m respectively, i.e. $a_{i}=0$ for $i>n$ and $b_{i}=0$ for $i>m$. Then $f \pm g=\sum_{i=0}^{\infty}\left(a_{i} \pm b_{i}\right) x^{i}$. For $i>\max \{n, m\}$, clearly $a_{i} \pm b_{i}=0$ since $a_{i}=b_{i}=0$. thus $\operatorname{deg}(f \pm g) \leq \max \{m, n\}$.

