THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2078 Honours Algebraic Structures 2023-24 Homework 6 Solutions 21st March 2024

• If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

Compulsory Part

- (a) Let n ∈ Z, then n ∈ Z[×] iff there exists m such that nm = 1, this holds precisely when n = ±1. So Z[×] = {1, −1}.
 - (b) Note that the multiplicative identity function is 1 : ℝ → ℝ where 1(x) = 1 for any x ∈ ℝ. A real-valued function f on ℝ is invertible if there exists g such that f(x)g(x) = 1(x) = 1 for any x ∈ ℝ. In particular, for any x ∈ ℝ, f(x) ∈ ℝ is invertible in the field ℝ, so f(x) ≠ 0. Conversely, if f(x) ≠ 0 for any x, then by taking g(x) = 1/f(x), we see that g is a multiplicative inverse to f(x). Thus R[×] = {f : ℝ → ℝ | f(x) ≠ 0, ∀x ∈ ℝ}.
 - (c) Let D be an integral domain, we will show that $D[x]^{\times} = D^{\times}$. Let $f(x) \in D[x]^{\times}$, let $g(x) \in D[x]$ such that f(x)g(x) = 1. Then $\deg(f) + \deg(g) = \deg(1) = 0$, so that $\deg(f) = \deg(g) = 0$, i.e. f(x) and g(x) are constant polynomial, and we may regard $f(x) = a, g(x) = b \in D$. Then f(x)g(x) = ab = 1 may be regarded as an equation in D. In particular, a, b are invertible. So $f(x) = a \in D^{\times}$.
- R[×] is a group under multiplication since multiplication is a well-defined associative binary operation by definition of ring, and any element r ∈ R[×] by definition has an inverse under this operation. The multiplicative identity 1 of R, satisfies 1 · 1 = 1, and so 1 ∈ R[×]. It is by definition the identity under product, therefore it forms a group.
- 3. We will prove the statement by induction on n, the case for n = 1 is clear as both sides are exactly the same. Suppose that the equality has been shown for some $n \in \mathbb{Z}_{>0}$, consider

$$\begin{aligned} a+b)^{n+1} &= (a+b)(a+b)^n \\ &= (a+b)\sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \\ &= \sum_{k=0}^n \binom{n}{k} a^{n-k+1} b^k + \sum_{l=0}^n \binom{n}{l} a^{n-l} b^{l+1} \\ &= \sum_{k=0}^n \binom{n}{k} a^{n+1-k} b^k + \sum_{k=1}^{n+1} \binom{n}{k-1} a^{n+1-k} b^k \\ &= \binom{n}{0} a^{n+1} + \binom{n}{n} b^{n+1} + \sum_{k=1}^n \left[\binom{n}{k} + \binom{n}{k-1}\right] a^{n+1-k} b^k \\ &= \sum_{k=0}^{n+1} \binom{n+1}{k} a^{n+1-k} b^k. \end{aligned}$$

In the last equality, we have used the equality $\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$, which can be shown directly from

$$\binom{n}{k} + \binom{n}{k-1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-k+1)!}$$
$$= \frac{(n-k+1)\cdot n!}{k!(n-k+1)!} + \frac{k\cdot n!}{k!(n-k+1)!}$$
$$= \frac{(n-k+1+k)\cdot n!}{k!(n-k+1)!}$$
$$= \frac{(n+1)!}{k!(n-k+1)!}$$
$$= \binom{n+1}{k}.$$

Therefore, the equality holds true for arbitrary n.

4. If a, b are nilpotent, suppose $a^n = 0$ and $b^m = 0$ for some $n, m \in \mathbb{Z}_{>0}$, note that in the solution of Q3, we only used the fact that a commutes with b. Therefore, by the same argument, we have

$$(a+b)^{n+m} = \sum_{k=0}^{n+m} \binom{n+m}{k} a^{n+m-k} b^k.$$

Note that for k = 0, 1, ..., m, we have $a^{n+m-k}b^k = a^n \cdot (a^{m-k}b^k) = 0 \cdot (a^{m-k}b^k) = 0$ and for k = m + 1, m + 2, ..., m + n, we have $a^{n+m-k}b^k = b^m(a^{n+m-k}b^{k-m}) = 0 \cdot (a^{n+m-k}b^{m-k}) = 0$. Therefore, each term in the above sum is zero, this implies that $(a + b)^{n+m} = 0$ and thus a + b is nilpotent.

- 5. (a) Note that it suffices to show that na = 0 for all a ∈ D if and only if n1 = 0. Then in particular, there is no n such that na = 0 for all a ∈ D if and only if there is no n so that n1 = 0. And the minimums of n satisfying both conditions are the same. If na = 0 for all a ∈ D, then in particular taking a = 1, we get n1 = 0. Conversely, if n1 = 0, then na = a + a + ... + a = 1 ⋅ a + 1 ⋅ a + ... + 1 ⋅ a = (1 + 1 + ... + 1) ⋅ a = n1 ⋅ a = 0 ⋅ a = 0. This completes the proof.
 - (b) If D has nonzero characteristic, suppose that it has characteristic n, if n was not prime, then n = kl for some k, l > 1. Then $0 = n1 = k1 \cdot l1$. Since $k, l \neq n, k1$ and l1 are nonzero element whose product is zero, which contradicts to the fact that D is an integral domain.

Optional Part

- 1. Note that $(a + b)(a b) = a(a b) + b(a b) = a^2 b^2 + ba ab = a^2 b^2$ holds true if and only if ba = ab. Therefore $(a + b)(a b) = a^2 b^2$ for all $a, b \in R$ if and only if ab = ba for all $a, b \in R$, i.e. R is commutative.
- 2. No, both 2, 3 are zero divisors in \mathbb{Z}_6 since $2 \cdot 3 = 0$ but 2 + 3 = 5 is a unit in \mathbb{Z}_6 .

For another example, consider the ring $M_2(\mathbb{R})$ the ring of 2-by-2 matrices with real coefficients, then the matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ are zero divisors since their product is the zero matrix, but they sum to give the identity matrix, which is not a zero divisor.

- 3. See Q5d of tutorial 8.
- 4. (a) Let f, g be real valued function so that f(0) = g(0) = 0, then clearly f + g is also a real valued function, and (f + g)(0) = f(0) + g(0) = 0, so $f + g \in R$.
 - (b) Similarly (fg)(0) = f(0)g(0) = 0, so $fg \in R$.
 - (c) The additive identity is given by the zero function $\mathbb{O}(x) := 0$ for all $x \in \mathbb{R}$ then by definition $\mathbb{O} \in R$. Clearly $(\mathbb{O} + f)(x) = 0 + f(x) = f(x) = (f + \mathbb{O})(x)$, so that $\mathbb{O} + f = f + \mathbb{O} = f$ so it is the additive identity.
 - (d) The multiplicative identity is given by the function 1(x) := 1 for all x ≠ 0 and 1(0) = 0. By definition 1 ∈ R, and (1 ⋅ f)(x) = f(x) for all x ≠ 0, and for x = 0, 1(0)f(0) = 0 = f(0). So we have verified that 1 ⋅ f = f ⋅ 1 = f for all f, so it is the multiplicatively identity.
- 5. (a) Yes, let $a, b \in R$ be units, then there exists a^{-1}, b^{-1} so that $aa^{-1} = a^{-1}a = 1 = bb^{-1} = b^{-1}b$. Then $(ab)(b^{-1}a^{-1}) = (b^{-1}a^{-1})(ab) = 1$, so ab is also a unit.
 - (b) No, 1 is unit in \mathbb{Z}_2 but 1 + 1 = 0 is not a unit.
- 6. (⇒) If R[x] is an integral domain, note that φ : R → R[x] by sending any r ∈ R to r regarded as a constant polynomial is a well-defined injective ring homomorphism, i.e. we may regard R ⊂ R[x] as a subring. Now a subring of an integral domain must be an integral domain, otherwise zero divisors in R will give zero divisors in R[x].

(\Leftarrow) If R is an integral domain, we will show that R[x] does not contain zero divisors as well. Let $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{j=0}^{m} b_j x^j$ be general elements in R[x], expressed in the form such that a_n, b_m are nonzero, assume that $f(x)g(x) = 0 \in R[x]$, then $f(x)g(x) = \sum_{k=0}^{n+m} \sum_{i+j=k} a_i b_j x^k = 0$. Here $\sum_{i+j=k} a_i b_j$ is the coefficient of x^k in f(x)g(x). In particular the coefficient of x^{n+m} is $a_n b_m = 0$, which implies that a_n or b_m is zero, as R does not contain zero divisor. This contradicts with our assumption on a_n and b_m .

7. (a) If f or g is 0, then deg(fg) = deg 0 = -∞ and deg f + deg g = -∞ since deg f or deg g is -∞. (Let's say we are doing arithmetic over [-∞,∞) where -∞ + k = -∞ for any finite k.)

Now if f, g are nonzero, then the degree is defined as the the maximum power appearing in the finite sum $f(x) = \sum_{i=0}^{\infty} a_i x^i$, i.e. the index n such that $a_n \neq 0$ but $a_i = 0$ for all i > n. Suppose that $\deg(f) = n$ and $\deg(g) = m$, then we may write $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{j=0}^{m} b_j x^j$. where a_n and b_m are nonzero. Then $f(x)g(x) = \sum_{k=0}^{m+n} \sum_{i+j=k} a_i b_j x^k$. Clearly there are no terms with higher degree than m + n, and the coefficient for x^{m+n} is given by $a_n b_m$, which is nonzero since R is an integral domain. Therefore $\deg(fg) = m + n = \deg f + \deg g$.

(b) If f or g is zero, say f = 0 wlog, then f + g = g and deg(f + g) = deg g so the inequality holds true.

Now suppose f, g are nonzero, we may write $f(x) = \sum_{i=0}^{\infty} a_i x^i$ and $g(x) = \sum_{i=0}^{\infty}$, and suppose f, g have degrees n, m respectively, i.e. $a_i = 0$ for i > n and $b_i = 0$ for i > m. Then $f \pm g = \sum_{i=0}^{\infty} (a_i \pm b_i) x^i$. For $i > \max\{n, m\}$, clearly $a_i \pm b_i = 0$ since $a_i = b_i = 0$. thus $\deg(f \pm g) \le \max\{m, n\}$.